Cognitive Radio-Aware Transport Protocol for Mobile Ad Hoc Networks

With the proliferation of new wireless service, scarce wireless resources is expected to become a critical issue. For this reason, cognitive radio mobile ad hoc networks (CogMANET) are being developed as a promising solution to this problem. However, in CogMANET, channel switching is inherently necessary whenever a primary user with a license appears on the channel. Allowing secondary users to choose an available channel from among a wide spectrum range thus enables reliable communication in this context, but communication characteristics such as bottleneck bandwidth and RTT will change with channel switch.

In response to this change, TCP has to adaptively update its congestion window (cwnd) to make an efficient use of the available resources. For this purpose, TCP CRAHN was proposed for CogMANET. In this paper, TCP CRAHN is first evaluated in cases where bottleneck bandwidth and RTT drastically change. Based on these results, TCP CoBA is proposed to further improve the throughput of the above use cases. TCP CoBA updates the cwnd based upon the available buffer space in the relay node upon channel switch, as well as other communication characteristics. Through simulations, we show that compared with TCP CRAHN, TCP CoBA improves the throughput by up to 200 percent.